
1

On the Delay Performance in a Large-Scale
Wireless Sensor Network: Measurement, Analysis

and Implications
Jiliang Wang, Member, IEEE, Wei Dong, Member, IEEE,

Zhichao Cao, Member, IEEE, and Yunhao Liu, Senior Member, IEEE

Abstract—We present a comprehensive delay performance
measurement and analysis in a large-scale wireless sensor net-
work. We build a light-weight delay measurement system and
present a robust method to calculate the per-packet delay. We
show that the method can identify incorrect delays and recover
them with a bounded error. Through analysis of delay and other
system metrics, we seek to answer the following fundamental
questions: What are the spatial and temporal characteristics
of delay performance in a real network? What are the most
important impacting factors and is there any practical model to
capture those factors? What are the implications to protocol
designs? In this paper, we identify important factors from
the data trace, and show that the important factors are not
necessarily the same with those in Internet. Further, we propose a
delay model to capture those factors. We revisit several prevalent
protocol designs such as Collection Tree Protocol, opportunistic
routing and Dynamic Switching based Forwarding, and show the
our model and analysis are useful to practical protocol designs.

Index Terms—wireless sensor networks, delay measurement,
large-scale, impacting factor.

I. INTRODUCTION

Recent advances in Wireless Sensor Networks (WSNs) have
fostered a large number of applications, such as structural
protection and health monitoring WSNs [1] [2], etc. Those
WSN applications often require Quality of Service (QoS)
guarantees to fulfill the system requirements, e.g., real-time
data delivery. Of the major factors that affect system QoS,
delay is an important one.

There are many research works on delay analysis and
measurement. Kompella et al. [3] present a fine-grained laten-
cy measurement method in presence of packet losses for the
Internet. Wilson et al. [4] present delay analysis results in data
centers, providing guidelines to practical data center design.
There are tremendous research efforts made to delay analysis
and modeling in WSNs. For example, probabilistic delay
bounds are presented in [5] [6] [7] [8] by extending network

This work is supported in part by NSFC under grant 61202359, NSFC
Major Program 61190110, NSFC under grant 61373166, National High-Tech
R&D Program of China (863) under grant 2011AA010100, NSFC under grant
61202402 and Research Fund for the Doctoral Program of Higher Education
of China (20120101120179).

Jiliang Wang, Zhichao Cao and Yunhao Liu are with School of Soft-
ware and TNLIST, Tsinghua University, China. E-mail: {jiliang, caozc,
yunhao}@greenorbs.com

Wei Dong is with College of Computer Science, Zhejiang University, China.
E-mail: dongw@zju.edu.cn

The preliminary version of this work was published at IEEE RTSS 2012.

1 2

Fig. 1: Deployment and sensor nodes in CitySee: 1) overview
of the deployment area, 2) node locations in the network.

calculus. Further, stochastic delay models are proposed by
combining real-time theory and queuing theory [9] [10] [11] or
applying Discrete Markov Process [12]. There are also some
empirical network delay models such as [13] [14].

While there are excellent research works for WSNs, Internet
and data centers, a practical end-to-end delay performance
measurement and analysis in an operational large-scale WSN
is still missing. On the other hand, considering the emerging
demand of WSN applications, it is important to understand
the delay performance in practical large-scale networks.

Delay performance measurement and analysis, in a large-
scale WSN, face non-trivial challenges. First, different from
the Internet and data centers [3] [15] [4], there are no effective
methods in WSNs supporting per-packet delay measurement.
Traditional delay measurement methods rely on network syn-
chronization, which introduce additional overhead. Thus it is
not always efficient to apply network synchronization to an op-
erational network. Second, analyzing the collected information
is challenging. Collecting all required information from the
network incurs a high network overhead. Thus the information
is usually incomplete due to resource constraints for sensor
nodes and packet losses in the network. Meanwhile, there are
various performance metrics in the network and a single delay
change may be accompanied by variation of multiple metrics.
Moreover, with low power listening, each node switches
between wake up and sleep states to save energy. The delays
exhibit intrinsic randomness in its distribution, introducing
difficulty to efficient and automatical analysis.

In this work, we build an infrastructure for delay
measurement in CitySee, a large-scale WSN consisting of
1200 nodes. The infrastructure does not rely on network
synchronization and thus does not introduce additional over-

2

CO2
sensor

semipermeable
membrane

back
cover

node

battery

connection

Mesh
node

antenna

normal
sensor
node

1 2 3

Fig. 2: Sensor nodes in CitySee: 1) CO2 sensor node, 2) normal
sensor node, and 3) mesh node.

Mesh NetworkSensor Network

Fig. 3: Overview of network architecture.

head. We present basic statistical characteristics based on the
collected data. To systematically and automatically identify
important impacting factors from various parameters, we build
a method based on Rulefit for the collected data trace. Further,
we quantitatively calculate the correlation between different
impacting factors and the delay performance. Based on those
important factors, we build a practical delay model and val-
idate the model using the collected data trace. Finally, we
revisit three important protocols based on the measurement
results and propose a practical delay model. In summary, the
contributions of this paper are as follows.
• We build a measurement infrastructure in an operational

large-scale WSN with little network overhead. Based on
the collected data , we present the spatial and temporal
characteristics of delay performance.

• We present an automatic method based on Rulefit [16] to
identify important impacting factors to the delay perfor-
mance.

• We propose a practical model and validate it with the
collected data. We show the implications to protocol
designs.

The rest of the paper is organized as follows. Section II
presents the system overview. Section III shows the delay
measurement method. Section IV presents the delay distribu-
tion overview. Section V introduces the method of identifying
important factors from the data. Section VI builds a delay
model based on the analysis. Section VII shows the implica-
tions of the analysis and the evaluation results. Section VIII
introduces the related work. Finally, Section IX concludes this
work.

II. SYSTEM OVERVIEW

A. The Network

The primary goal of CitySee is to precisely measure CO2
emissions in a city-wide area. We started the project since July,

Listen to the
channel

Hear a transmission and
then begin to receive

Listen to the
channel

Has a packet and then
begin to send preambles

Sends the data when
the receiver wakes up

Node 1

Node 2

Fig. 4: Basic mechanism of LPL protocols.

2011. Figure 1 shows an overview of the network. Totally,
we have deployed 1200 nodes. The network employs a tiered
architecture with three kinds of nodes, i.e., normal telosB
nodes, CO2 nodes and mesh nodes.

In the network, each normal sensor node reads the sensing
data and records system status. CO2 nodes can also read the
CO2 concentration. The normal nodes and CO2 nodes form a
network and deliver their data to a sink node (normal node) in
the network. Figure 2 shows the sensor nodes in our network.

The mesh nodes have a high bandwidth of several MB/s
and a long transmission distance. They comprise the network
backbone. Sink nodes of different subnets are connected to
the network backbone in order to deliver packets to the
base station. Figure 3 illustrates the overview of the system
architecture.

B. Protocols

1) Low Power Listening: Low Power Listening (LPL) is
widely adopted in WSNs to save energy. In LPL, each node
switches between awake and sleep state to save energy. Most
LPL protocols share the similar principle as shown in Figure 4.
Each node samples the channel for a short duration in each
cycle. If energy is detected, the node stays awake for another
short duration to receive packets. Otherwise, the node turns
off the radio and in the next cycle (e.g., 500ms later) re-
samples the channel. To transmit a packet, the sender continues
sending packets as preambles until the receiver wakes up. For
broadcast, the preamble lasts for a cycle duration, in order to
ensure that all neighboring nodes wake up once. For unicast
with link layer ACK, the sender can stop the preambles until an
ACK is received or the end of a cycle. Another type of LPL
protocol is receiver-initiated low duty cycle protocol. Each
node periodically wakes up and sends probe packets to see if
there are transmissions intended for it. If a node has packets to
send, it will keep awake and send the packets once receiving
a probe packet from the receiver. Since a sender may begin to
send packets at any time, the time the sender needs to wait is
randomly distributed in the cycle. This introduces randomness
to packet delay.

2) Collection Tree Protocol: Collection Tree Protocol (CT-
P) [17] is used to build routing tree in the network. CTP adopts
the ETX metric [18], the expected transmission count, as the
path quality metric. Each node selects a path with minimum
ETX. The ETX of a link is calculated as 1/q, where q is the
packet reception ratio. The path ETX is calculated as the sum
of all link ETXs along the path.

3

C. Measurement Infrastructure

Time synchronization can be used to measure delay in the
network. However, time synchronization protocols in WSNs,
such as FTSP [19], and etc [20] [21] [22], incurs additional
traffic overhead into the network in order to maintain a global
time stamp for all nodes.

We use a light-weight approach to measure the end-to-
end packet delay without incurring synchronization traffic. For
each packet, we define the delay as the time from the packet
is generated at the source node to the time that the packet is
received at the sink node. As shown in Figure 5, the delay for
a packet on a path mainly consists of the following parts, 1)
the packet transmission time for a packet, i.e., the time used to
modulate the packet to signal, 2) the channel accessing time,
i.e., the time used to contend for the channel, including the
backoff time, 3) the queuing time and 4) the propagation time
on each hop, i.e., the traveling time for the signal from the
sender to the receiver which can be calculated as the distance
between the sender and receiver divided by the light speed.

Our approach is based on the MAC layer time stamping
technique (MLT) [19]. In MLT, a packet is time stamped just
before the first byte is transmitted after backoff (with respect
to sender’s clock), and just before the first byte is received
(with respect to the receiver’s clock).

Our approach measures the end-to-end delay as follows.
Figure 5 shows an example of 3 nodes. Assume a packet is
generated at node 1’s local time t1, we show how to measure
the generation time to node 2’s and node 3’s clock. Suppose
the packet is transmitted and time stamped at t2, with the time
t1 contained in the packet. Here, node 1 performs backoffs
during the time [t1, t2]. Thus at time t2, the packet is modulated
and emitted through the antenna. Then the packet is received
at node 2 and time stamped at t3 by MLT. Since the distance
between two nodes is usually several hundreds of meters, we
ignore the signal propagation time from node 1 to node 2.
Node 2 calculates the packet generation time with respect to
node 2’s clock, by subtracting the time difference t2− t1 from
time t3, i.e., t3− (t2− t1). Intuitively, it seems that the packet
is generated at time t3− (t2− t1) to node 2’s clock.

Here, we denote the time t2− t1 as the waiting time (tw) at
node 1. This is calculated as the time a packet is transmitted
minus the time the packet is received at node 1. Similarly,
the sink node, i.e. node 3, can calculate the packet generation
time after receiving a packet from node 2 as t5− (t4− (t3−
(t2− t1))), and the receiving time as t5, both are with respect
to node 3’s clock. Then the delay of the packet is calculated
as t4− (t3− (t2− t1)).

D. Collected Data

The network collects four types of packets, denoted as C1,
C2, C3 and C4 respectively. Each node sends each type of
packet in every 10 minutes. There is a common header with
four fields, which records a common sequence number and the
time stamps used for delay measurement. We will introduce
in the next section how to use the time stamps for delay
measurement.

t1
SFD

t2

t3-(t2-t1)

t4

t5

1

2

3

time

t5-(t4-(t3-(t2-t1))

SFD
t3

queuing time,
channel access

time

trans. time propagation. time

Fig. 5: Measuring delay in the network.

III. DELAY MEASUREMENT

In this section, we show how to derive the delay for each
packet.

A. Delay Measurement Analysis

We assume the time t provided by a sensor node follows
the linear clock model [19], i.e.,

t = (1+α)(τ− to) (1)

where τ is the time provided by a perfect clock, to is the
offset and α is the clock drift bounded by [−α̂ , α̂]. Each
packet from a node has an unique increasing sequence number
i. For packet i, we denote the receiving time of the packet i
on node j with respect to the perfect clock as tr(i, j) and
the transmitting time of the packet i on node j as tx(i, j). The
transmitting/receiving time is the time just before the first byte
of a packet is transmitted/received. We denote O as the source
node and D as the sink node for a path. Thus, tr(i,O) is the
generation time of packet i on the source node. Therefore, the
end-to-end delay of packet i for a path can be calculated as

td(i) = tr(i,D)− tr(i,O). (2)

Denote the waiting time for packet i at node j on the path as
tw(i, j). We have tw(i, j) = tx(i, j)− tr(i, j). The waiting time
tw(i, j) contains the backoff time on node i to contend for the
channel. We ignore the signal propagation time in our analysis
considering the distance between the sender and receiver is
small. Therefore, the end-to-end delay is also calculated as

td(i) =
n−1

∑
j=1

tw(i, j). (3)

In practical networks, we denote t̃X (i, j,k) the measured
time of operation X for packet i on node j with respect to
k’s clock. We can measure
• the SourceTime t̃r(i,O,O), i.e. the generation time of

packet i to the source’s clock,
• the SinkTime t̃r(i,D,D), i.e. the receiving time of packet

i to the sink’s clock,
• the waiting time t̃w(i, j, j) for packet i on node j on a

path, and
• the SourceTimeAtSink as t̃a(i) = t̃r(i,D,D) −

∑
n−1
j=1 t̃w(i, j, j).

We summarize the parameters in Table I.

4

TABLE I: Notations

parameter description

α̂ The maximum clock drift.
O The source node of a path.
D The sink node of a path.
tX (i, j) The time of operation X for packet i on node j

with respect to the perfect clock. X={x, r} denotes
the time the packet is transmitted and the time the
packet is received. X=w denotes the waiting time.
On the source node, we use tr(i,O) to denote the
packet generation time.

td(i) The end-to-end delay for packet i. Thus we have
td(i) = tr(i,D)− tr(i,O). We also have td(i) =
∑

n−1
j=1 tw(i, j) for a path consisting of n nodes.

t̃X (i, j,k) The measured time of operation X for packet i on
node j with respect to k’s clock.

t̃a(i) The measured packet generation time for packet i
with respect to the sink’s clock.

For two packets i1 and i2, we denote the measured time
difference on node j as ∆t̃X (i1, i2, j) = t̃X (i1, j, j)− t̃X (i2, j, j)
and the time difference with respect to the perfect clock as
∆tX (i1, i2, j) = tX (i1, j)− tX (i2, j). Denote ∆t̃a = t̃a(i1)− t̃a(i2),
we have the following theorem.

Theorem 1. (Drift Constraint) For two packets i1 and i2 (i1 >
i2), the measured SourceTimeAtSink satisfies

(1−2α̂)∆t̃r(i1, i2,O)≤ ∆t̃a ≤ (1+2α̂)∆t̃r(i1, i2,O). (4)

Proof. See Appendix A.

The intuition of the drift constraint theorem is as follows.
Due to a maximum drift of α̂ for each node, the maximum
relative drift between the SourceTimeAtSink and SourceTime
should be less than 2α̂ . We can check the correctness of the
measured time stamps in the received packets and thus filter
the incorrect time stamps. Denote the calculated delay as

t̃d(i) = t̃r(i,D,D)− t̃a(i) (5)

we have the following theorem.

Theorem 2. (Delay Error Bound) The calculated delay t̃d(i)
satisfies

(1− α̂)td(i)≤ t̃d(i)≤ (1+ α̂)td(i). (6)

Proof. See appendix B.

This theorem shows that the calculated delay has a bounded
error. Intuitively, the delay error is introduced by measuring the
waiting time on each node. As the delay td(i) is small, the error
is also very small. This is different from time synchronization
protocols which need to maintain a global clock all the time
with periodical beacon packets.

Further, for two packets i1 and i2 (i1 > i2), we assume the
time stamp of SourceTimeAtSink in packet i1 is incorrect. We
can use the correct time stamps in the packet i2 to recover the
i1. We calculate the delay of packet i1 by

t ′d(i1)= t̃r(i1,D,D)−(t̃r(i1,O,O)−(t̃r(i2,O,O)− t̃a(i2))). (7)

It can also be shown that the error of the recovered delay
is proportional to the delay td(i1) and the generation time
difference between two packets.

−2

−1

0

1

2
x 10

8

de
la

y
(m

s)

Step 1

−2

−1

0

1

2
x 10

8

de
la

y
(m

s)

Step 2

0

500

1000

1500

de
la

y
(m

s)

Step 3

0 200 400 600 800 1000 1200 1400 1600 1800
0

1000

2000

3000

de
la

y
(m

s)

Packets

Step 4

Fig. 6: Delay processing. Step 1: The original data. Step
2: Result after filtering the incorrect delays. Step 3: Result
after recovering the overflow time stamps. Step 4: Result after
recovering the incorrect delays based on the result in step 3.
Blue crosses are the recovered delays.

B. Delay Processing

The data processing consists of the following steps.
1) We first calculate t̃d = t̃r(i,D)− t̃a(i). The calculated t̃d

is shown in step 1 in Figure 6.
2) There exist various types of errors in the data. The first

type of error comes from MLT. Due to packet overflow
in the limited receiving buffer and packet losses, MLT
cannot guarantee to provide correct stamps. To address
this problem, we first validate the delay values and ex-
clude the incorrect time stamps by Theorem 1. We group
the delays satisfying the drift constraint into the same
group. Since incorrect delays are randomly distributed,
we omit those groups with much less elements than other
groups. The result is shown in step 2.

3) After removing the incorrect delays, we find there are
very large t̃d . Those large values are due to time s-
tamp overflow. In our measurement method, the Souce-
TimeAtSink provided by MLT is a 4-byte time stamp
based on a 32KHz timer. Hence the maximum time
is tmax = 0xFFFFFFFF/32 ms, i.e., about 1.5 days.
Since normally t̃d is smaller than 1.5 days, we set
t̃d = t̃d mod tmax. We show t̃d in step 3.

4) Till now, we have calculated the delays for the correct
time stamps. At this step, we recover those incorrect
delays according to Eq. (7) with previously received
correct packets.

The final result is shown in Step 4 in Figure 6.

IV. DELAY OVERVIEW

A. Overall Distribution

Normally, the maximum single hop delay is L according to
the LPL mechanism without other impacting factors, where L
is the cycle length of LPL, e.g., L= 500ms in our network. For
a packet of k hops, the delay should be distributed between

5

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 20 40 60 80 100 120 140 160 180 200

D
el

ay
 (

m
s)

Index

large delay

Fig. 7: Delay distribution for all nodes.

0 50 100 150 200 250
0

20

40

60

80

100

120

140

160

60002

x

y

Fig. 8: Spatial distribution.

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

ppm

C
D
F

Fig. 9: CDF of drift for all nodes.

0 and kL without other impacting factors. The expected delay
for such a path should be kT/2. Figure 7 shows the overall
delay distribution for one subnet. The x-axis is the node ID
and y-axis is the delay. For each node, We show the statistics
of the delays with the median, 25th percentile, 75th percentile,
k× 500 and the lowest delay, where k is the average hop
count for this node. We sort all the nodes with respect to
the median delay. The red dots in the figure represent delays
larger than k× 500. We denote those delays as large delays.
Overall, this figure presents several kinds of information. (1)
The delay distribution exhibits randomness. (2) Though the
delay of different nodes varies in a large range, the median
delays are evenly distributed between 0 to 2 seconds. (3) There
exist many large delays for most nodes. Later we will explain
the reasons for those large delays.

B. Spatial Distribution

We further look at the spatial distribution of delays in the
network. In Figure 8, each circle is plotted according to the
physical location of different nodes. In the middle area, there
is a building. The radius of each circle represents the average
delay over the measurement period and the depth of the color
represents the delay variation. A darker color indicates a larger
variation. The red node (60002) is the sink node. We can see
that nodes far away from the sink node have large average
delays as well as large delay variations. Nodes in the right
top area are farthest from the sink node and have the largest
delays and delay variations.

C. Overall Clock Drift

Before examining the delay details, we look at the clock
drift of sensor nodes. To calculate the relative clock drift, as
in [19], we apply robust linear fitting for the collected time
stamps and then calculate the slope as the relative clock drift
for all nodes to sink node. Figure 9 shows the CDF of the
relative clock drift for all nodes. The x-axis is the drift and
y-axis is the CDF of nodes. More than 90% of nodes have a
clock drift less than 40 ppm. This coincides with the result
from [23]. The result shows that the clock drift of most nodes
in the outdoor environment is relative stable.

V. ANALYSIS OF DIFFERENT FACTORS

In the data, we have various parameters from different
aspects. We first collect features that may have an impact on

delay as reported in existing works, such as queue length,
backoff time, parent change and etc. We also collect envi-
ronment factors, e.g., temperature, humidity and light; routing
parameters, e.g., routing loop; data transmission parameters,
e.g., overflow, retransmission, duplicated counters; sensor node
status, e.g., radio duty cycle, radio on time, task execution time
and etc.

It is difficult to identify important impacting parameters
to the delay performance. A single delay change may be
accompanied by variations of different parameters. Moreover,
the randomness introduced in LPL mechanism makes it even
difficult to extract important factors. To address those issues,
in this section, we leverage an automatic tool to identify im-
portant impacting factors and then investigate those important
factors.

A. Important Factors

We use Rulefit [16] to find the important factors. Rulefit
is a supervised learning approach to train predictors based on
rule ensembles. Rulefit first trains a decision tree based on the
input data. The decision tree can provide rules, each of which
is a combination of one or more feature tests, i.e., combining
one or more features into simple ‘and’ tests. Let x be a vector
of n features and s j be a subset of possible values for feature
x j. Then a rule takes the form of

r(x) =
n

∏
j=1

I(x j ∈ s j) (8)

where I(·) is an indicator function. A rule takes value one if
all feature tests in the rule take value one. Rulefit provides
the relative importance of different features based on rules.
First, each rule is given an importance value according to its
importance in the decision tree. Then the importance for a
variable in a rule is calculated as the importance of the rule
divided by the number of variables in the rule. The importance
for a variable is the sum of the importance for the variable in
all rules containing this variable.

Rulefit has two properties: (1) it can rank features by their
relative importance to the prediction goal, and (2) it can
provide easy-to-interpret rules (combinations of features) for
user understanding. Rulefit has been adopted in recent works,
e.g., [24], to understand different impacting factors. Here we
present an overview of Rulefit approach. Interested readers can
refer to [16] for more details.

6

re
tra

ns

pa
th

len

qu
eu

ele
n

co
ng

es
tio

nB
ac

ko
ff

te
m

pe
ra

tu
re

ini
tia

lB
ac

ko
ff

hu
m

idi
ty

loo
p

pa
re

nt
Ch

an
ge

Re
lat

ive
 im

po
rta

nc
e

0

20

40

60

80

100

Fig. 10: Relative importance of the parameters.

We apply Rulefit to the collected parameters and delays.
The ranking result of all parameters by Rulefit is shown in Fig-
ure 10. The top five most important factors are retransmission,
hop count, queue length, congestion backoff and temperature.
By applying Rulefit, we can filter those less important factors
and then only focus on important factors for a real network.

B. Detailed Correlation

We now investigate those important factors and examine the
relationship of those factors to the delay performance.

1) Hop Count: Figure 11 shows the delay distribution
with respect to different hop counts. Overall, packets with
a larger hop count to the sink node have a larger delay.
More specifically, this figure shows two kinds of information.
First, for hop count k, most delays (more than 80%) are less
than k× 500 ms, which coincides with the settings of LPL
in our network. Second, this figure also shows that for each
hop count, there exist many large delays, indicating other
impacting factors to the delay performance.

2) Retransmission: Figure 12 (a) shows the average retrans-
mission count at each hop. We can see that retransmissions per
packet at different hops are almost equal. Though the traffic is
high for nodes near the sink, the corresponding retransmission
count for those nodes is similar to other nodes. We investigate
the data and find the collisions near the sink are not severe.
Note that the retransmission count for nodes at hop 1 is much
lower than other nodes since the radio of the sink is always
on.

Figure 12 (b) shows that the delay with different retrans-
mission counts. It can be seen that the retransmission count
and delay have a similar trend. The delay increases as the
increasing of retransmission count. Meanwhile, we calculate
the Pearson correlation for the retransmission and delay.
The Pearson correlation between two variables X and Y is
calculated as the covariance of the two variables divided by
the product of their standard deviations, i.e.,

pX ,Y =
cov(X ,Y)

σX σY
. (9)

Then we show the CDF of correlations for all nodes. As in
Figure 12 (c), the x-axis is the correlation and y-axis is the

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

delays

C
D

F

pathlen = 0
pathlen = 1
pathlen = 2
pathlen = 3
pathlen = 4
pathlen = 5
pathlen = 6

3
210

4
5

6

Fig. 11: Delay distributions to different hops.

CDF of nodes. We find that most nodes have high correlations
between retransmission and delay.

Further, we look into those large delays. For hop k, we
denote the delays larger than k×500 as large delays and other
delays as normal delays. In order to correlate those large delays
to retransmissions, we set a packet with retransmission count
larger than 0 as a retransmission event. Then in the entire
network, we calculate how retransmission events can be used
to predict large delays. For a packet with a retransmission
event, if such a packet has a large delay, we say the event is
correlated to a large delay and call it a true positive (TP).
Otherwise, we call it a false negative (FN). For a packet
without retransmission event, if such a packet is correlated
to a normal delay, we call it a true negative (TN). Otherwise,
we call it a false positive (FP). Then we calculate the accuracy
which gives the probability that a retransmission event can be
used to predict a large delay, i.e.,

accuracy =
T P+T N

T P+FN +FP+T N
. (10)

Figure 12 (d) shows the CDF of accuracy for all nodes. The
x-axis is the accuracy and y-axis is the CDF of nodes. The
result shows the accuracy for most nodes is high. More than
80% of nodes have an accuracy ratio higher than 60%.

Considering an extreme case when all packets have large
delays, even randomly selecting a large enough subset of
packets as retransmission events would lead to a high accuracy.
To address such a problem, as in [25], we calculate the
balanced accuracy, i.e.,

balanced accuracy =
0.5×T P
T P+FN

+
0.5×T N
T N +FP

. (11)

Figure 12 (d) shows the CDF of balanced accuracy. We can
see that for balanced accuracy, more than 70% of nodes still
have a balanced accuracy higher than 0.6.

3) Queuing: We also examine the impact of queuing on the
delay performance. There is only one queue on each node. For
each packet along the path to sink node, we record the queue
length when the packet arrives at each node. Figure 13 (a)
shows the average queue length for different hops. Unlike
the retransmission count, the average queue length varies for
different hops. Nodes near the sink have larger average queue
length. This indicates that though high traffic near the sink
does not incur packet losses and retransmissions, it results in
more congestions and thus a larger queue length. Since the sink
is always on, nodes within 1 hop from sink node can quickly
drain their packets and thus have a smaller queue length.

7

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

1 2 3 4 5 6 7 8 9

R
et

ra
ns

m
is

si
on

Hop

averge retransmission

(a)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1 2 3 4 5 6 7 8

D
el

ay
 (m

s)

Retransmission

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
D

F

Correlation

correlation

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Ratio

balanced accuracy
accuracy

(d)

Fig. 12: Impact of retransmission to delay. (a) Hop count to average retransmissions. (b) Retransmission with respect to delay
distribution. (c) CDF of correlation between retransmission and delay for all nodes. (d) Accuracy and balanced accuracy of
using retransmission to predict large delay.

Figure 13 (b) shows the delay with respect to the total queue
length along the path. We also find that many packets with a
large queue length are correlated with large delays. We also
calculate the Pearson correlation. Figure 13 (c) shows the CDF
of correlation for all nodes. The x-axis is the correlation and
y-axis is the CDF of nodes. We can see that for most nodes,
delay has a positive correlation with the queue length. But the
correlation is not as strong as that of retransmission. In LPL,
the receiver is awake with a high probability after the first
packet in the queue is transmitted. Thus consecutive packets
may not need to wait until the receiver wakes up. Therefore,
the impact of queue length on delay is relative small. We
further explain the reason in the delay model in Section VI.

We further examine the predictability of queue length to
large delays. Similar to retransmission, we set a packet with
a queue length larger than 0 as a queuing event. Then we
correlate those queuing events to large delays and calculate
the accuracy and balanced accuracy. The CDF of accuracy and
balanced accuracy are shown in Figure 13 (d). First, we can
find that on many nodes, queuing events are correlated with
large delays, e.g., about 80% of nodes have accuracy higher
than 60%. For balanced accuracy, about 80% of nodes have
balanced accuracy higher than 40%. In total, we can see that
the correlation here is not as high as that for retransmission,
which coincides with the result of Figure 13 (c).

4) Other Factors: From the result of Rulefit, we find
that environment factors, MAC backoffs (including congestion
backoff and initial backoff), and routing events (including
parent change and loop event) are not as important as afore-
mentioned factors.

It has been shown [23] [26] that environment factors such
as temperature and humidity affect the clock drift and link
quality. Figure 9 shows the drift of sensor nodes is relatively
small and thus its impact to packet delay is also limited.
The impact of environment on link quality has also been
studied in different works such as [26]. Link quality is indeed
related to delay performance. Such an impact is captured in
retransmissions. Thus we do not consider environment as a
direct impacting factor.

The impact of MAC backoffs on delay is also extensively
studied in different works such as [27]. In our network, we find
that the average backoff for each packet is relative small. Thus
the impact of backoff is not as significant as other factors.

The impact of routing events, such as parent change and

loop events, has been studied [28] in Internet. It has been
shown that those events may lead to a large end-to-end
delay [28]. For different network deployments, the impacting
factors may be different. The differences should be considered
in protocol design. Different from Internet, our result shows
that the impact of parent change is relatively small in WSNs.
On the other hand, the impact of wireless link quality, retrans-
mission and so on becomes high due to the following reasons.
First, the number of those events is relative small. Second,
nodes often switch among forwarders with similar hop counts.
In practical protocol design, we should consider the scenario
when forwarders with a similar hop count do not exist. Third,
events such as loop events can be quickly recovered by the
network protocol. For example, when a loop is detected in
CTP, the beacon interval is decreased to minimum in order to
propagate the information as quickly as possible, alleviating
the impact of loop event on end-to-end delay.

C. Apply Rulefit to other Networks

To further show that our method can be applied in other
networks, we implement our method with the recent proposed
received-initiated low duty cycle protocol A-MAC [29]. We
evaluate the protocol in an indoor network. Figure 14 shows
the result of Rulefit. We can see that retransmission and queue
length are still two of the most significant impacting factors.
Different from the result in Figure 10, the impact of other
factors is much lower. We investigate the data and find that
there are less contentions for indoor environment with a small
network size. Meanwhile, the temperature for the environment
is more stable than the outdoor environment. The loop event
and parent change event are also very rare. Nevertheless, we
can still obtain impacting factors using Rulefit for A-MAC.

VI. DELAY MODEL

According to the analysis of different factors, in this section,
we build a model for the end-to-end packet delay and validate
it in our network.

A. Model

We first model the the single hop packet delay and then
extend it to multi-hop end-to-end delay. To derive the model,
we describe the following parameters.
• ts: the sleep time in LPL.

8

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

1 2 3 4 5 6 7 8 9

Q
ue

ue
 L

en
gt

h

Hop

averge queue length

(a)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 2 4 6 8 10 12 14

D
el

ay
 (m

s)

Queue Length

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

C
D

F

Correlation

correlation

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Ratio

balanced accuracy
accuracy

(d)

Fig. 13: Impact of queuing events to delay. (a) Queue length to average retransmissions. (b) Queue length with respect to
delay distribution. (c) CDF of correlation between queue length and delay for all nodes. (d) Accuracy and balanced accuracy
of using queuing events to predict large delay.

re
tra

ns

pa
th

le
n

co
ng

es
tio

nB
ac

ko
ff

in
iti

al
B

ac
ko

ff

lo
op

te
m

pe
ra

tu
re

qu
eu

el
en

hu
m

id
ity

pa
re

nt
ch

an
ge

R
el

at
iv

e
im

po
rt

an
ce

0

20

40

60

80

100

Fig. 14: Impacting factors of A-MAC.

• tw: the awake time of the receiver in LPL.
• tb: MAC layer backoff time, including the initial backoff

time and congestion backoff time.
• u: the duty cycle ratio of the receiver, i.e., the awake time

divided by the sleep time.
• tx: the packet modulation/demodulation time. This is

usually platform-dependent and is related to the packet
size.

• r: the number of retransmissions for a packet.
We first calculate the delay for a single hop packet transmis-

sion. Assume the packet is retransmitted r times. According
to the mechanism of LPL, each unsuccessful transmission
takes of time of length tw + ts. Thus the time used for r
retransmissions is r(tw + ts). For the (r + 1)th transmission
which is successful, there are two cases in LPL:
• Case 1: if the receiver is sleeping, the sender should wait

until the receiver wakes up and then send the packet to
the receiver.

• Case 2: otherwise, the packet can be sent directly.
For case 1, since the transmission can fall into any time during
the sleeping period of the receiver, the delay is U(0, ts)+tb+tx,
where U(0, ts) is a random distribution between 0 and ts. For
case 2, the delay for a packet is tb + tx. According to the duty
cycle ratio of each receiver, the probability for case 1 is 1−u
and for case 2 is u.

Consequently, the 1-hop delay is given by:

T (ts, tw,r) =

{
r(tw + ts)+ tb + tx with prob. u
r(tw + ts)+U(0, ts)+ tb + tx otherwise

(12)

Based on the single hop delay, we derive the delay for a
multi-hop path. A packet p is transmitted on a path consisting
of n nodes from node 1 to n. At each node, the packet is
first put into the transmission queue and then transmitted after
prior packets in the queue are transmitted. To calculate the
multi-hop delay, we first describe the following parameters.
• li: queue length at node i, i.e., the number of packets in the

transmission queue, including the packet p. The packet
needs to wait until prior li−1 packets are transmitted.

• ri, j: the number of retransmissions for the j-th packet in
the queue on node i.

The time for the first packet in the queue can be calculated
according to Eq. 12. We then calculate the time for following
packets in the queue. In LPL, the receiver should stay awake
after receiving a packet. When r = 0, the packet in the queue
is directly sent to the receiver since the receiver is awake.
Otherwise, the packet is retransmitted since the receiver is
sleeping. Thus for packets except the first one in the queue,
the delay is

Tq(ts, tw,r) =

{
tb + tx r = 0
T (ts, tw,r) otherwise

(13)

Therefore, the delay for a path consisting of n nodes
(1,2, . . . ,n) is given by

D(n) =
n−1

∑
i=1

T (t i+1
s , t i+1

w ,ri,li)+
n−1

∑
i=1

li−1

∑
j=1

Tq(t i+1
s , t i+1

w ,ri, j) (14)

where T (t i+1
s , t i+1

w ,ri,li) is the single hop delay for the first
packet in the queue at node i, Tq(t i+1

s , t i+1
w ,ri, j) is the delay

for the jth packet in the queue, t i+1
s is the sleep time and t i+1

w
is the awake time of node i+1.

B. Model Validation

We validate our model with the collected data. In CitySee,
we have recorded the queue length on each node of the path,
i.e., li. We also recorded the ETX value from each node
to its neighbors. This can be used to approximate ri, j, for
j > 1. For each packet, we also recorded the retransmissions
on each hop which is ri, j, for j = 1. On each node, we
calculate the average duty cycle u and average backoff time tb.
Using those parameters as input, we calculate the delay with
the model. Then we compare the result of the model with
the delay calculated from the packets. The result is shown

9

0 2 4 6 8 10 12
0

1000

2000

3000

4000

5000

hop

de
la

y
(m

s)

Data
Model

Fig. 15: Delay distribution of the model and collected data
with respect to different hop counts.

in Figure 15. We show the average delay and variations for
different hops. We can see that both results increase linearly
with the hop count. The model and practical delay have very
similar distribution, showing that our model is effective to
capture those important factors.

VII. IMPLICATIONS

In this section, we revisit three prevalent protocols and
discuss the implications of our analysis and delay model.

A. Routing Protocol

We first analyze the commonly used data collection protocol
CTP in WSNs. Through analysis, we find that CTP protocol,
with ETX as the routing metric, may not appropriately choose
a good path. For brevity, we assume the queuing delay on each
hop is 0, i.e., li = 1 on each hop. Then we have

D(n) =
n−1

∑
i=1

T (t i+1
s , t i+1

w ,ri,1)

According to Eq. 12, the expected delay is

E(D(n)) = E(
n−1

∑
i=1

(ri,1(tw + ts)+ tb + tx))+(1−u)E(
n−1

∑
i=1

U(0, ts))

Denote ET Xi as the ETX for the link from node i to i+ 1.
According to the definition of ETX, we have ET Xi = E(ri,1)+
1. The expected delay on the path is

E(D(n)) =
n−1

∑
i=1

((ET Xi−1)(tw + ts)+ tb + tx)+(1−u)(n−1)
ts
2

= PathET X(tw + ts)− (n−1)(tw +
1+u

2
ts− tb− tx).

(15)

We can see that even for paths with the same path ETX,
the expected end-to-end delay can be different. In practical
settings, the awake time tw and sleep time ts are usually larger
than the backoff time tb and data transmission time tx. Thus
we have (n−1)(tw+ 1+u

2 ts− tb− tx)> 0. According to Eq. 15,
for the same path ETX, E(D(n)) decreases as the hop count
n increases. This indicates that longer paths, which are often
prohibited previously, may even be better than shorter ones.

Considering a simple example for two paths with the same
ETX of 2: the first path consists of one link with a link
ETX 2; the second path consists of two links, each of which
has a link ETX 1. CTP treats those two paths equally and
thus randomly chooses one as the routing path (in current
implementation, the one appears earlier in the routing table is

0 1 2 3 4 5 6
0

500

1000

1500

2000

2500

3000

3500

4000

4500

group

de
la

y
(m

s)

original
improved

Fig. 16: Comparison of EDETX with CTP protocol

selected). In fact, according to the delay model, the second
path is better than the first one in terms of delay, even
though the second one has a larger hop count. For the first
path, there are 2 transmissions in expectation including 1
retransmission. For the second path, there are 2 transmissions
in expectation without retransmissions. Intuitively, according
to the mechanism of LPL, if there is no retransmission, the
expected time is L/2, where L is the cycle in LPL. However,
if a packet is retransmitted, the expected time is L. Hence, the
second path is better. This also explains in Figure 10 why
retransmission count is more important than hop count. In
current design, the ETX metric only counts the expectation
of transmissions and makes no difference for retransmissions
and successful transmissions.

Accordingly, we propose a new path quality metric, i.e.,
expected delay based on ETX (EDETX). According to equa-
tion 12, the EDET Xi, j for a single hop from node i to node j is
calculated as EDET Xi, j = (ET Xi, j−1)(tw+ ts)+ tb+ tx +(1−
u)ts/2, where ET Xi, j is the ETX from node i to node j. Those
parameters can be calculated by each node locally. Based
on the single hop EDETX, each node can calculate the path
EDETX to the sink node, which is the sum of link EDETXs
on the path. We improve the original CTP protocol with the
EDETX metric. In the improved protocol, to minimize the
transmission cost, each node first selects a parent with minimal
ETX. Then the node will select a parent with minimal EDETX.
Thus EDETX will not incur additional transmission overhead.
It is worth noting EDETX can also be used without ETX to
improve delay performance. Figure 16 shows the comparison
result for the improved protocol and CTP. The x-axis is the
group of packets with the same ETX. We can see that for
different groups, the average delay with EDETX is reduced.

B. Opportunistic Routing

Opportunistic routing can significantly improve system per-
formance [30] [31]. We evaluate the practical performance of
opportunistic routing with real trace from CitySee. For each
node, we calculate the probability that the delay performance
can be improved, i.e., the portion of neighbors with smaller
delays than the node itself. We evaluate two different strategies
as shown in Figure 17. First, we evaluate the strategy that
a node can select the next forwarder in all neighbors. For
more than 50% of nodes, the probability to select a better
node is higher than 50%. However, opportunistic routing in

10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Probability of Improvement

in all neighbors
in closer neighbors

Fig. 17: Evaluation of opportunistic routing

all neighbors may still result in selection of a forwarder with
a larger delay.

Further, we investigate the second strategy. Each node only
selects neighbors closer to the sink node. We can see that it is
better to select nodes from neighbors with smaller hop counts
to the sink node. For more than 80% of nodes, the probability
of improvement is larger than 95%.

C. Dynamic Switching based Forwarding

Dynamic switching based forwarding (DSF) [32] is pro-
posed to optimize the expected end-to-end delay in WSNs by
selecting a set of forwarders. In DSF, each node searches in
its neighbors to find an optimal forwarding set with minimum
expected end-to-end delays. More specifically, a node searches
through its neighbors and calculates whether it is beneficial to
add each neighbor into the forwarding set.

For each node, we calculate its link quality qi to each neigh-
bor i and the delay Ti of neighbor i. Assume the forwarding
set is F = {v1,v2, . . . ,v|F |} and v1,v2, . . . ,v|F | are in ascending
order of waking up time. For brevity, for a node which wakes
up multiple times, we let it appear multiple times in the set.
Then the expected delay is

D(F) = (
|F |

∑
i=1

i−1

∏
k=0

(1−qk)qiTi), (16)

where q0 = 0.
DSF uses dynamic programming to find F such that D(F) is

minimized with a certain packet reception ratio being satisfied.
We compare the delay of DSF using our trace with the
practical measured packet delay in our network. Figure 18
shows the delay difference of measured delay in our network
and the delay of applying DSF to our trace, i.e. practical
delay−DSF delay. First, for most packets, the difference is
larger than 0. We can see that for more than 75% of packets
the practical delay is larger than the DSF delay, indicating
that using DSF is beneficial in terms of delay performance.
Meanwhile, note that the improvement for most nodes is less
than 500 ms, indicating further improvement is possible. In
LPL protocol, we can extend the delay model to the network
without fixed scheduling for different nodes. In this case, as
in Eq. 12, the probability for retransmission count r can be
calculated [33] as

p(r = k) = ∏
i∈F

(1−qi)
k(1−∏

i∈F
(1−qi)) (17)

Thus the expected number of retransmission can be calculated
as

E(r) =
∏i∈F (1−qi)

1−∏i∈F (1−qi)
(18)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000

C
D

F

The delay difference

difference

Fig. 18: Difference of the practical packet delay and DSF.

Then the single hop delay can be calculated as
De,F = E(r)(tw + ts)+ tb + tx +µts (19)

where e is the sender, µts is the expected delay for a success-
ful transmission. We can further calculate the multiple hop
delay and improve the performance according to techniques
described in Section VI.

VIII. RELATED WORK

Delay Analysis. There are extensive works for delay per-
formance analysis in WSNs. First, probabilistic delay bounds
are proposed in [5] [6] [7] [8] by extending network calculus.
In the second category, stochastic delay models are proposed.
For example, in [9] [10] [11], different models are proposed
by combining real-time theory and queuing theory. In those
models, unreliable networks with heavy traffic are considered.
There are some empirical network delay models [13] [14]
proposed for end-to-end delay measurements. A delay mod-
el based on Discrete Markov Processing in the network is
proposed in [12]. Besides those end-to-end delay models, the
single hop channel access delay models are also analyzed
in [27] [34] [35]. However, those works proposed in WSNs
are often based on assumptions, e.g., traffic, routing path, and
not evaluated in a real large-scale network. In this work, we
are the first to propose a light-weight delay measurement and
analysis in an operational LPL WSN.

Delay in Internet/Data Center. There are also a large
number of research works in Internet and data centers. Pucha
et al. [28] show the impact of routing events on end-to-end
delay in Internet. Kompella et al. [3] present fine grain latency
measurements in presence of packet losses for internet with a
lossy difference aggregator. To measure the per-flow delay, Lee
et al. [15] present a measurement method with reference delay
interpolation. As the development of data center technologies,
Wilson et al. [4] present delay analysis results in the data
center and provide guidelines to the data center design.

Time Synchronization. There are also many global
time synchronization methods in wireless sensor networks,
e.g., [19] [36] [20]. Those methods can synchronize all nodes
in the network and provide synchronized time stamps. Our
measurement method is different from those methods in two
aspects. First, our method does not require time synchroniza-
tion among all nodes in the network. We recover the time
stamp at the sink side. Thus this reduces the message exchange
overhead among all nodes. Second, our method does not need
to maintain a synchronized time stamp all the time. Therefore,
our method does not require periodical message exchange.

11

Large Scale Sensor Network Deployment. There are many
sensor network deployments in the world. Table II shows
several network deployments in the world.

TABLE II: WSN deployments

System Scale Power supply environment

Great Duck island [37] 100+ Battery Outdoor
VigilNet [38] 200 Battery Outdoor
MoteLab [39] 190 Tethered Indoor
SensorScope [40] 97 Solar Outdoor
Trio [41] 557 Solar/Battery Outdoor
CitySee 1200 Battery Outdoor

IX. CONCLUSION

We focus on delay measurement, analysis and implications
in an operational large-scale LPL wireless sensor network.
We propose a light-weight delay measurement method to effi-
ciently calculate delay without time synchronization, which is
applicable to operational networks. We analyze the spatial and
temporal characteristics of delay distribution through carefully
examine system metrics. Further, we extract different impact-
ing parameters to delay performance with the incomplete data,
propose a practical delay model to capture those factors and
validate it in a large-scale network. Finally, we show the
implications of measurement and analysis to protocol design.

REFERENCES

[1] T. B. O. Chipara, C. Lu and G.-C. Roman, “Reliable clinical monitoring
using wireless sensor networks: Experience in a step-down hospital
unit,” in Proceedings of ACM SenSys, 2010.

[2] S. N. Pakzad, G. L. Fenves, S. Kim, and D. E. Culler, “Design
and implementation of scalable wireless sensor network for structural
monitoring,” in Journal of Infrastructure Systems, 2008.

[3] R. R. Kompella, K. Levchenko, A. C. Snoeren, and G. Varghese, “Every
microsecond counts: Tracking fine-grain latencies with a lossy difference
aggregator,” in Proceedings of ACM SIGCOMM, 2009.

[4] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowstron, “Better never
than late: Meeting deadlines in datacenter networks,” in Proceedings of
ACM SIGCOMM, 2011.

[5] M. Fidler, “An end-to-end probabilistic network calculus with moment
generating functions,” in Proceedings of IEEE IWQoS, 2006.

[6] A. Koubaa, M. Alves, and E. Tovar, “Modeling and worst-case dimen-
sioning of cluster-tree wireless sensor networks,” in Proceedings of IEEE
RTSS, 2006.

[7] A. Burchard, J. Liebeherr, and S. Patek, “A min-plus calculus for end-
to-end statistical service guarantees,” IEEE Transactions on Information
Theory, vol. 52, no. 9, pp. 4105–4114, 2006.

[8] J. Schmitt and U. Roedig, “Sensor network calculus - a framework for
worst case analysis,” in Proceedings of IEEE DCOSS, 2005.

[9] J. Lehoczky, “Real-time queueing theory,” in Proceedings of IEEE RTSS,
1996.

[10] J. P. Lehoczky, “Real-time queueing network theory,” in Proceedings of
IEEE RTSS, 1997.

[11] S.-N. Yeung and J. Lehoczky, “End-to-end delay analysis for real-time
networks,” in Proceedings of IEEE RTSS, 2001.

[12] Y. Wang, M. C. Vuran, and S. Goddard, “Cross-layer analysis of the
end-to-end delay distribution in wireless sensor networks,” IEEE/ACM
Transactions on Networking, vol. 20, no. 1, pp. 305–318, 2012.

[13] E. Felemban, C.-G. Lee, E. Ekici, R. Boder, and S. Vural, “Probabilistic
qos guarantee in reliability and timeliness domains in wireless sensor
networks,” in Proceedings of IEEE INFOCOM, 2005.

[14] K. Gopalan, T.-c. Chiueh, and Y.-J. Lin, “Probabilistic delay guarantees
using delay distribution measurement,” in Proceedings of ACM MULTI-
MEDIA, 2004.

[15] M. Lee, N. G. Duffield, and R. R. Kompella, “Not all microseconds are
equal: Enabling per-flow measurements with reference latency interpo-
lation,” in Proceedings of ACM SIGCOMM, 2010.

[16] J. Friedman and B. Popescu, “Predictive learning via rule ensembles,”
Annals of Applied Statistics, vol. 2, no. 3, pp. 916–954, 2008.

[17] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Collection
tree protocol,” in Proceedings of ACM SenSys, 2009.

[18] D. Couto, D. Aguayo, J. Bicket, and R. Morris, “A high-throughput
path metric for multi-hop wireless routing,” in Proceedings of ACM
MobiCom, 2003.

[19] M. Maróti, B. Kusy, G. Simon, and Ákos Lédeczi, “FTSP: The Flooding
Time Synchronization Protocol,” in Proceedings of ACM SenSys, 2004.

[20] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time synchro-
nization using reference broadcasts,” in Proceedings of USENIX OSDI,
2002.

[21] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient Network
Flooding and Time Synchronization with Glossy,” in Proceedings of
ACM/IEEE IPSN, 2011.

[22] Y. Wang, Y. He, X. Mao, Y. Liu, Z. Huang, and X. Li, “Exploiting
constructive interference for scalable flooding in wireless networks,” in
Proceedings of IEEE INFOCOM, 2012.

[23] T. Schmid, Z. Charbiwala, J. Friedman, Y. H. Cho, and M. B. Srivastava,
“Exploiting manufacturing variations for compensating environment-
induced clock drift in time synchronization,” in Proceedings of the ACM
SIGMETRICS, 2008.

[24] I. Cunha, R. Teixeira, D. Veitch, and C. Diot, “Predicting and tracking
internet path changes,” in Proceedings of ACM SIGCOMM, 2011.

[25] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. S. Chase,
“Correlating instrumentation data to system states: a building block for
automated diagnosis and control,” in Proceedings of USENIX OSDI,
2004.

[26] W. Xi, Y. He, Y. Liu, J. Zhao, L. Mo, Z. Yang, J. Wang, and X. Li,
“Locating sensors in the wild: pursuit of ranging quality,” in Proceedings
of ACM SenSys, 2010.

[27] G. Bianchi, “Performance analysis of the ieee 802.11 distributed coor-
dination function,” IEEE Journal on Selected Areas in Communications,
vol. 18, no. 3, pp. 535–547, 2000.

[28] H. Pucha, Y. Zhang, Z. M. Mao, and Y. C. Hu, “Understanding network
delay changes caused by routing events,” in Proceedings of ACM
SIGMETRICS, 2007.

[29] P. Dutta, S. Dawson-Haggerty, Y. Chen, C.-J. M. Liang, and A. Terzis,
“Design and evaluation of a versatile and efficient receiver-initiated link
layer for low-power wireless,” in Proceedings of ACM SenSys, 2010.

[30] S. Chachulski, M. Jennings, S. Katti, and D. Katabi, “Trading structure
for randomness in wireless opportunistic routing,” in Proceedings of
ACM SIGCOMM, 2007.

[31] S. Biswas and R. Morris, “Exor: Opportunistic multi-hop routing for
wireless networks,” in Proceedings of ACM SIGCOMM, 2005.

[32] Y. Gu and T. He, “Dynamic switching-based data forwarding for low-
duty-cycle wireless sensor networks,” IEEE Transactions on Mobile
Computing, vol. 10, pp. 1741–1754, 2011.

[33] O. Landsiedel, E. Ghadimi, S. Duquennoy, and M. Johansson, “Low
power, low delay: opportunistic routing meets duty cycling,” in Pro-
ceedings of ACM/IEEE IPSN, 2012.

[34] T. Sakurai and H. Vu, “Mac access delay of ieee 802.11 dcf,” IEEE
Transactions on Wireless Communications, vol. 6, no. 5, pp. 1702–1710,
2007.

[35] O. Tickoo and B. Sikdar, “Modeling queueing and channel access delay
in unsaturated ieee 802.11 random access mac based wireless networks,”
ACM/IEEE Transactions on Networking, vol. 16, no. 4, pp. 878–891,
2008.

[36] P. Sommer and R. Wattenhofer, “Gradient clock synchronization in
wireless sensor networks,” in Proceedings of ACM/IEEE IPSN, 2009.

[37] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and D. Culler,
“An analysis of a large scale habitat monitoring application,” in Pro-
ceedings of SenSys, 2004.

[38] T. He, S. Krishnamurthy, L. Luo, T. Yan, L. Gu, R. Stoleru, G. Zhou,
Q. Cao, P. Vicaire, J. A. Stankovic, T. F. Abdelzaher, J. Hui, and
B. Krogh, “Vigilnet: An integrated sensor network system for energy-
efficient surveillance,” ACM Transactions on Sensor Networks, vol. 2,
no. 1, pp. 1–38, 2006.

[39] G. Werner-Allen, P. Swieskowski, and M. Welsh, “Motelab: a wireless
sensor network testbed,” in Proceedings of ACM/IEEE IPSN, 2005.

[40] G. Barrenetxea, F. Ingelrest, G. Schaefer, M. Vetterli, O. Couach, and
M. Parlange, “Sensorscope: Out-of-the-box environmental monitoring,”
in Proceedings of ACM/IEEE IPSN, 2008.

[41] P. Dutta, J. Hui, J. Jeong, S. Kim, C. Sharp, J. Taneja, G. Tolle, K. White-
house, and D. Culler, “Trio: enabling sustainable and scalable outdoor
wireless sensor network deployments,” in Proceedings of ACM/IEEE
IPSN, 2006.

12

APPENDIX A
Proof. According to the linear clock model, we have

∆t̃r(i1, i2,O) = (1+α1)∆tr(i1, i2,O) (20)
∆t̃r(i1, i2,D) = (1+α2)∆tr(i1, i2,D) (21)

n−1

∑
j=1

t̃w(i1, j, j) = (1+α3)
n−1

∑
j=1

tw(i1, j), (22)

n−1

∑
j=1

t̃w(i2, j, j) = (1+α4)
n−1

∑
j=1

tw(i2, j), (23)

where α1, α2, α3 and α4 are clock drifts bounded by [−α̂ , α̂].
Thus we have

∆t̃a = (t̃r(i1,D,D)−
n−1

∑
j=1

t̃w(i1, j, j))− (t̃r(i2,D,D)−
n−1

∑
j=1

t̃w(i2, j, j)) (24)

According to Eq. (20)-(23), we have

∆t̃a = (t̃r(i1,D,D)−
n−1

∑
j=1

t̃w(i1, j, j))− (t̃r(i2,D,D)−
n−1

∑
j=1

t̃w(i2, j, j))

= (1+α2)∆tr(i1, i2,D)

− (1+α3)
n−1

∑
j=1

tw(i1, j)+(1+α4)
n−1

∑
j=1

tw(i2, j)

(25)

Since α2, α3 and α4 are bounded by [α̂ , α̂], we have

∆t̃a ≤ (1+ α̂)∆tr(i1, i2,D)− (1− α̂)
n−1

∑
j=1

tw(i1, j)+(1+ α̂)
n−1

∑
j=1

tw(i2, j) (26)

According to Eq. (2) and (3), we have

∆t̃a ≤ (1+ α̂)∆tr(i1, i2,O)+2α̂

n−1

∑
j=1

tw(i1, j) (27)

Since α̂ is in the magnitude of 10−6 and ∑
n−1
j=1 tw(i1, j) is in

the magnitude of 10−3 seconds, which are much smaller than
(1+ α̂)∆tr(i1, i2,O), we ignore the second term and obtain

∆t̃a ≤ (1+ α̂)∆tr(i1, i2,O) (28)

Combining Eq. (20), for small α̂ , we have

∆t̃a ≤
(1+ α̂)∆t̃r(i1, i2,O)

1− α̂

≈ (1+2α̂)∆t̃r(i1, i2,O).

(29)

Similarly, we have

∆t̃a ≥ (1−2α̂)∆t̃r(i1, i2,O). (30)

Combining Eq. (29) and (30), we prove the theorem.

APPENDIX B
Proof. According to Eq. (5), we have

t̃d(i) = (t̃r(i,D,D)− t̃a(i))

=
n−1

∑
j=1

t̃w(i, j, j)
(31)

Based on Eq. (22), we have

t̃d(i)≤ (1+ α̂)
n−1

∑
j=1

tw(i, j)

= (1+ α̂)td(i)

(32)

Similarly, we have
t̃d(i)≥ (1− α̂)td (33)

Combining Eq. (32) and (33), we prove the theorem.

Jiliang Wang received his BE degree from Uni-
versity of Science and Technology of China and
his PhD degree from Hong Kong University of
Science and Technology. He is currently with School
of Software and TNLIST, Tsinghua University. His
research interests include wireless sensor networks,
network measurement and pervasive computing. He
is a member of the IEEE.

Wei Dong received his BS and PhD degrees from the
College of Computer Science in Zhejiang University
in 2005 and 2011, respectively. He is now an asso-
ciate professor in the College of Computer Science
in Zhejiang University. His research interests include
networked embedded systems and wireless sensor
networks. He is a member of the IEEE.

Zhichao Cao received the BE degree in Tsinghua
University, and his PhD degree in Hong Kong U-
niversity of Science and Technology. His current
research interest is wireless sensor networks and
mobile network. He is a member of the IEEE.

Yunhao Liu received the BS degree in automation
from Tsinghua University, China, in 1995, the MS
and PhD degrees in computer science and engineer-
ing from Michigan State University, in 2003 and
2004, respectively. He is now Cheung Kong Pro-
fessor at Tsinghua University. His research interests
include RFID and sensor network, the Internet, and
pervasive computing.

